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Summary
Drought stress substantially impacts crop physiology resulting in alteration of growth and

productivity. Understanding the genetic and molecular crosstalk between stress responses and

agronomically important traits such as fibre yield is particularly complicated in the allopolyploid

species, upland cotton (Gossypium hirsutum), due to reduced sequence variability between A

and D subgenomes. To better understand how drought stress impacts yield, the transcriptomes

of 22 genetically and phenotypically diverse upland cotton accessions grown under well-watered

and water-limited conditions in the Arizona low desert were sequenced. Gene co-expression

analyses were performed, uncovering a group of stress response genes, in particular transcription

factors GhDREB2A-A and GhHSFA6B-D, associated with improved yield under water-limited

conditions in an ABA-independent manner. DNA affinity purification sequencing (DAP-seq), as

well as public cistrome data from Arabidopsis, were used to identify targets of these two TFs.

Among these targets were two lint yield-associated genes previously identified through

genome-wide association studies (GWAS)-based approaches, GhABP-D and GhIPS1-A.

Biochemical and phylogenetic approaches were used to determine that GhIPS1-A is positively

regulated by GhHSFA6B-D, and that this regulatory mechanism is specific to Gossypium spp.

containing the A (old world) genome. Finally, an SNP was identified within the GhHSFA6B-D

binding site in GhIPS1-A that is positively associated with yield under water-limiting conditions.

These data lay out a regulatory connection between abiotic stress and fibre yield in cotton that

appears conserved in other systems such as Arabidopsis.

Introduction

Upland cotton (Gossypium hirsutum L.) is the world’s top

renewable textile fibre, supporting a multibillion-dollar industry

with a global production of 120.2 million bales of cotton

(~26 million metric tonnes). It is a major economically important

crop for the U.S. and for Arizona, where upland cotton is planted

on � 50 000 ha, mainly in the semi-arid environment of the low

desert using surface irrigation to complement limited precipita-

tion. Cotton productivity in semi-arid areas of the Southwestern

U.S. is severely threatened by global climate change. Increasing

climatic variability is responsible for hotter summers, with day and

night temperatures far above the thermal optimum (30/22 °C) for
the crop, and lower and erratic rainfall patterns which expose the

crop to an increasing risk of drought (Alizadeh et al., 2020).

Therefore, revealing the physio-genetics mechanisms that regu-

late cotton’s response to arid conditions is of primary interest.

Specifically, this information can be leveraged for the

development of new elite cotton cultivars with improved

adaptation to hotter and drier climatic conditions that are

predicted in the near future.

In addition to being a critical fibre crop, cotton serves as an

excellent model polyploid system for studying the impacts that

interspecific hybridization has had on agronomic traits. The

cotton species predominantly cultivated for fibre production, G.

hirsutum (upland cotton) and Gossypium barbadense (Pima

cotton), are new world allotetraploids believed to have formed

~1–2 million years ago from a transoceanic hybridization of an

A genome diploid originating from Africa or Asia (e.g.

Gossypium arboreum, tree cotton) and a D genome diploid

from Central or South America (e.g. Gossypium raimondii;

Chen et al., 2007; Wang et al., 2012). This unique combina-

tion of homeologous gene pairs in the allotetraploids resulted

in superior fibre yield and quality over diploid progenitors that

have since undergone additional selection in both G. hirsutum

and G. barbadense. Despite high levels of sequence
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conservation and collinearity between these two species and

their diploid progenitors, an altered epigenetic landscape, as

well as homeologue expression divergence, have contributed to

G. hirsutum’s capacity to maintain lint yield under a wide range

of environments (Chen et al., 2020; Li et al., 2021; Pan

et al., 2020; Peng et al., 2022).

Like other crops, drought tolerance in cotton involves

complex signalling pathways and transcriptional networks

orchestrated by a number of transcription factors (TFs) and

signalling proteins (Mahmood et al., 2019; Shinozaki and

Yamaguchi-Shinozaki, 2007; Takahashi et al., 2020). These

regulatory proteins are typically upstream of, or transcriptionally

interconnected with, the genes necessary for coping with stress

and maintaining crucial metabolic pathways. Examples of

typical regulatory targets include genes encoding enzymes

related to the production of protective metabolites, trans-

porters, chaperones and lipid biosynthesis proteins (Gupta

et al., 2020; Malhotra and Sowdhamini, 2014; Singh and

Laxmi, 2015). In cotton, multiple transcription factor families,

such as GhNACs, GhDREBs, GhERFs and GhWRKYs, have been

associated with the drought stress response (Chu et al., 2015;

Huang et al., 2009, 2013; Ma et al., 2017). Additionally,

genome-wide association studies (GWAS)-based approaches

have identified numerous candidate genes related to lint yield,

fibre quality and other agronomically important traits (Fang

et al., 2014; Ma et al., 2018; Sun et al., 2021). Indeed, while

germplasm exists with the ability to maintain fibre growth and

quality under heat and drought conditions, little is known

about how these traits arose in the cotton genome and the

regulatory factors that connect them.

In this study, transcriptome sequencing was performed for 22

upland cotton accessions grown in the Arizona low desert and

exposed to both well-watered and water-limited conditions.

Phenotypic and metabolomic data were integrated into a

co-expression network analysis to identify genes associated with

improved yield under water-limited conditions. DAP sequencing

was performed on two transcription factors, GhDREB2A-A and

GhHSFA6B-D, shown to have the highest association with lint

yield and stress response genes across the panel. Using

transcriptomic, biochemical and phylogenomic approaches,

GhHSFA6B-D binds to and positively regulates the lint

yield-associated gene, GhIPS1-A, and the associated

GhHSFA6B-D regulatory element is only present in the A

subgenome and A genome diploid progenitors. We also identify

a lint yield-associated single nucleotide polymorphism directly

adjacent to this GhIPS1-A regulatory element that influences

GhHSFA6B-D binding and appears to suggest additional selection

at this locus during domestication.

Results and discussion

Genetic profiles of upland cotton panels in field
experiment

To better understand the molecular mechanisms underlying

cotton’s performance under drought conditions, 22 diverse

upland cotton accessions from the Gossypium Diversity Reference

Set (Hinze et al., 2015, 2016) were evaluated under

water-limited (WL) and well-watered (WW) conditions in the

field. These accessions were selected for reported variation in

heat and drought tolerance as well as fibre qualities (Table S1).

Leaf tissue from plants at the flowering and boll development

stage was collected (two replicates each, ~100 DAS; Figure 1a).

On average, ~27 million PE 9 150 bp reads were generated for

each replicate. Reads were then aligned using the RMTA pipeline

(Peri et al., 2020) to the G. hirsutum v2.0 reference genome

(Chen et al., 2020); (Table S1). Gene-level expression data were

counted using G. hirsutum gene-level annotations as

meta-features in FeatureCounts (Liao et al., 2014; Table S1,

parameter: -t gene, -g ID). The Pearson correlation coefficient

(PCC) of normalized read counts revealed high correlation among

replicates (average PCC = 0.904), except for accession ‘Tipo

Chaco’ (PCC = 0.61, cutoff: 0.8) (Table S2). Thus, this accession

was discarded from further analyses, resulting in 21 accessions for

further analyses.

To determine the relatedness of each of these accessions, these

RNA-seq data were used to perform variant calling relative to the

reference genome (108 396 bi-allelic SNPs after filtering). These

data were used to reconstruct a phylogeny of the 21 accessions,

rooted by VIR_7153_D_10, which resulted in three major

subgroups (Figure 1b). Based on information from USDA GRIN-

Global, the first of these three subgroups is referred to as

‘Foreign’, as this group contains accessions developed primarily

outside of the U.S. (Figure 1b and Table S1). The second

subgroup consists of ‘U.S.’ accessions of breeding lines and

commercial cultivars developed in the U.S. (Figure 1b and

Table S1). The last group, ‘Mixed’, consists of commercial

cultivars from the U.S. and improved breeding lines generally

developed outside the U.S. (Figure 1b and Table S1). Thus, these

21 accessions serve as a genetically diverse framework to

investigate the regulatory mechanisms controlling the physiolog-

ical responses to drought in cotton.

Variation in physiological and molecular responses to
drought in major subgroups

The phylogenetic groupings were used to determine the degree to

which genotype and environment influenced physiological

Figure 1 Experiment information and genomic, metabolomic and transcriptomic profiling of the cotton panel used in this work. (a) Overview of the

watering regime and timing of data collection for the experiment in the 2019 summer field season at Maricopa, AZ. Water levels were reduced to 50% of

normal for the treatment plots at the early flowering stage. Metabolomic and transcriptomic data were collected at late flowering/early boll development,

with phenotypic measurements taken throughout (See Materials and methods). (b) A phylogeny of the accessions used in this study based on filtered SNPs

derived from the transcriptomic data. The three groups, ‘Foreign’, ‘U.S.’ and ‘Mixed’, reflect historical breeding information obtained from USDA GRIN-

Global. (c) Overview of the phenotype profiles of 21 upland cotton accessions under water-limited (WL) and well-watered (WW) conditions: A cluster

heatmap indicated the ratio of phenotypic data under WL condition relative to the WW condition (WL value / WW value, range: 0.8–1.2). Group colouring

denotes accessions belonging to the three phylogenetic groups from 1b. (d) Three-dimensional PCA displaying the impact that treatment has on large-scale

changes in normalized metabolite content between accessions. The different treatments have been denoted with light red (water-limited) and light blue

(well-watered) ovals. (e) Three-dimensional PCA was used to display the top 10% (N = 3768) most variably expressed genes based on normalized read

counts, with treatment groups denoted similarly to 1d.
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responses to drought in the assembled panel. The effects of

genotype (G: Foreign, U.S. and Mixed), environment (E: WL and

WW) and G*E interaction on six fibre quality and agronomic traits

and four vegetation indices were examined using two-way ANOVA

(Table S3). Among these traits, three of the four vegetation indices

were significantly affected by drought (Table S3; two-way ANOVA

cut-off: P < 0.05, Figure S1). The treatment effect was particularly

significant in the ‘Foreign’ subgroup (student t-test cutoff:

P < 0.05). By contrast, long-term drought stress brought limited

impacts to most fibre quality traits apart from the significantly

reduced micronaire (two-way ANOVA: P = 0.002) observed in

‘Mixed’ and ‘Foreign’ subgroups (t-test: P = 0.015 and 0.047,
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respectively, Figure S1, Table S3). In contrast to treatment effects,

pronounced genotypic effects were observed between major

subgroups (‘Foreign, U.S. andMixed’) for five of the six fibre quality

traits but not for the four vegetation indices (Table S3).

However, intragroup comparisons of responses to drought

revealed stark differences. For instance, each subgroup contained

one or more accessions that significantly outperformed close

relatives when using a ratio of phenotypes from WL relative to

WW condition as an indicator, particularly in fibre quality traits

(Figure 1c). The lack of phylogenetic congruence in observed

traits suggests that lint yield and drought-associated traits may

have been selected differently in even closely related accessions.

Importantly, the presence of outperforming accessions implies

that this panel may be useful in identifying the factors associated

with lint yield and drought stress.

We analysed metabolite profiles as molecular phenotypes for

stress response to understand the effects of drought stress.

Changes in the metabolome of the panel were measured by

re-examining 451 metabolites previously analysed in Melandri

et al. (2021) (27 GC–MS and 424 LC–MS/MS). A global profiling

of the 451 metabolites revealed that the strongest effects were

due to drought treatment (PC1, 62%; Figure 1d). The second and

third principal components explained a further 5.0% and 3.4%,

respectively, but the phylogenetic relationships (i.e. genotype)

were not clearly separated along either of these axes. A large

treatment effect was also observed in the metabolite profiles

using a two-way ANOVA (Table S4). Drought treatment signif-

icantly impacted more than 95% of metabolites, but only 5% of

the metabolites exhibited genotypic effects; around 25% of

metabolites exhibited changes that could be associated with G*E
effects (P < 0.05, Table S4). Among the 432 metabolites

associated with significant treatment effects, 273 were

up-regulated and 159 down-regulated by drought. Among these

metabolites are the known glycine and proline (Fang

et al. (2015); Table S4). Thus, these data demonstrate that

alteration of specific metabolites associated with drought

tolerance (osmoprotectants) is a common response to water-

deficit stress conditions across our panel.

To test the basis for metabolic changes, we examined

transcriptome profiles among these accessions in response to

drought stress. Consistent with the observed metabolomic

changes, 68% of the variation within the panel could be

explained by the irrigation treatment (Figure 1e). In addition,

neither PC 2 nor PC 3 could be attributed to genotypic

differences. We then conducted pairwise comparisons of gene

expression under the two conditions to identify differentially

expressed genes (DEGs) for each accession (Table S5). We

compared transcriptomes to determine if DEGs were shared

between all intragroup accessions, or between all accessions

within multiple subgroups in response to drought. Of the

thousands of DEGs in each accession, there were few genes that

were shared among all accessions within a subgroup, or between

subgroups (Figure S2A, Table S5). The foreign accessions shared

the least group-wide DEGs (up-regulated: 57 and down-

regulated: 86), whereas the mixed accessions featured the most

(up-regulated: 194 and down-regulated: 177) (Figure S2B). In

contrast, there were 300 DEGs (194 upregulated and 106

downregulated) shared among all examined accessions

(Table S6). Gene ontology (GO) enrichment of these shared

up-regulated genes revealed an over-representation of the stress

response and phosphorylation signal transduction genes while

the shared down-regulated genes were involved in fatty acid

biosynthetic processes and transport processes (Figure S3B).

Thus, these shared DEGs may represent a common set of genes

involved in drought stress response.

Upland cotton has a well-reported subgenome expression bias

towards the D (new world) subgenome when comparing home-

ologous gene pairs across a wide range of tissues (Chen

et al., 2020). Subgenome expression dominance is believed to

be influenced by changes in the environment (Bird et al., 2018),

thus, we next examined how subgenome expression dominance

was impacted at a global scale (comparing all expressed genes in

A and D subgenomes) across our panel in response to

water-limiting conditions. After removal of genes with low

expression (average TPM across samples < 1; 75 376 genes

retained), we first compared expression dominance under well-

watered and water-limited conditions separately. Under well-

watered conditions, 10/21 accessions displayed a significant bias

in mean gene expression towards the A subgenome (pair-wise t-

test, P < 0.05; Figure S3), with the remainder not showing any

bias. In contrast, under water-limiting conditions, the bias

towards the A subgenome became more pronounced (17/21

accessions). Interestingly, three accessions with a bias under well-

watered conditions lost that bias under water-limiting conditions:

Western Stormproof, DP 393 and Mexico 910. Each of these

three accessions has reported tolerance to hot and dry conditions,

although they are not the only accessions with this trait in our

panel (Table S1). Thus, this global analysis suggests that genes

from the old world subgenome are predominantly expressed

under hot (well-watered) and hot/dry (water-limited) conditions.

Using WGCNA to examine transcriptome–trait
connections in response to drought

To determine a relationship between transcriptomic and pheno-

typic variability, we performed a weighted gene co-expression

analysis (WGCNA) to uncover the association of gene networks

with phenotypes. For the WGCNA, we incorporated the top 10%

most variable genes across the 21 accessions under WL conditions

(determined by median absolute deviation [MAD], N = 4432

genes). We obtained 22 modules that satisfied a scale-free

topology (R2 = 0.86; Figure S4A, Table S8) using a soft threshold

(Beta = 7) for network construction (Figure S4B). These 22

modules displayed clear separation, with only 45 genes (<0.2%)

unclassified (Figure S4C). Using PCC, these 22 well-clustered

modules were then correlated with the trait dataset, which

consisted of 10 phenotypes and 451 metabolites. Among these

traits being tested, 5 traits (lint percentage, referred to here as lint

yield, UI, sPRI, CRI and WI/NDVI) and 9 metabolites exhibited

significant correlation to 18 modules (Figure 2, P < 0.05). In

particular, lint yield displayed the highest positive correlation with

the turquoise module (r = 0.68, P = 7e-04), whereas terpenoid

and carbohydrate metabolites displayed a positive correlation

with the salmon module (P < 0.05; Figure 2).

Identifying trait-associated functional modules using
multiple data integration

Following module–trait correlation, we selected key module(s) for

further functional analysis by incorporating the profile of GO

enrichment, transcription factor (TF)-binding motif enrichment

and gene expression variance (Figure 2a). Using Fisher test

(P < 0.01) for GO enrichment, 14 of the 18 modules exhibited

some degree of enrichment for genes involved in biological

processes of interest. Notably, the lint yield-associated module

contained a high degree of enriched stress response genes (Q-
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value: 1.6e�12) as well as protein folding genes (Q-value: 4.6e�8).

Also, a large number of photosynthesis-related and redox-related

genes (Q-value: 2.3e�10 and Q-value: 8.4e�4, respectively) were

identified within the blue module, negatively correlated with the

abundance of multiple metabolites (Figure 2a). These data

suggest that a co-expression network-based approach may

uncover key genes integrating plant development and yield in

response to water limitation.

To further investigate the upstream regulators of those genes

associated with enriched GO terms, we took the 2-kb upstream

promoter region sequences of all genes (WGCNA weight

score > 0.1) in each of the 18 modules to perform motif

enrichment analysis using analysis of motif enrichment (AME;

McLeay and Bailey, 2010). To narrow down the list of possible

enriched TFs/motifs, we focused on TF/motif pairs where the TF

was also present in the same module. This approach uncovered

four modules with enriched motifs corresponding to 10 different

transcription factors, with the lint yield module (turquoise)

containing the highest numbers of enriched TFs (n = 6, AME

TFs, Figure 2b, Table S8). Under the hypothesis that significant

trait-associated modules might display a more pronounced

response to treatment, we assessed expression variation for

genes within each module between accessions and conditions by

calculating the coefficient of variance (CV). In support of our

hypothesis, the turquoise module displayed the most significant

(P = 0.0033) increase in CV relative to the background gene set

(selected by random sampling: N = 193; Figure 2c). In sum, these

data indicate that the genes within the ‘turquoise’ module

(highlighted with a star in Figure 2a), and their associated TFs,

may be critical for maintaining yield under water-limiting

conditions.

DAP-seq of HSFA6B and DREB2A revealed the module-
specific upregulation of their targets in response to
drought

Among six TFs in the turquoise module that are associated with

yield, four were AME TFs that are predicted to be associated with

heat or drought stress based on homology with functionally

Figure 2 Trait and co-expression association in response to water-deficit conditions. (a) Modules of genes derived from a weighted gene co-expression

analysis were correlated with phenotypic and metabolomic traits, with traits passing the significance threshold (P < 0.05) shown along the bottom.

Modules are named according to colour, with the number of genes within each module shown (gene counts). Positive (red hues) and negative (blue hues)

correlation values are shown for all significant trait–module correlations with scale bar below. GO term enrichment was performed on all genes within the

module, with significant terms shown along the bottom. The number of genes associated with each GO term is shown within each box along with

the ‘purple’ to ‘yellow’ scale displayed. (b) The number of TFs with enriched binding motifs within their respective module (TF and motifs are present in the

same module) is shown. (c) Coefficient of variance (CV) of expression (TPM) was calculated for all genes within each module across all accessions and

both conditions. CV was also calculated for a background set of genes based on an average module size (N = 193). The red dashed box outlines the

‘turquoise’ module, which was found to be correlated with both lint yield and stress response genes and was selected as a key module (highlighted with a

red star) for further examination.
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characterized TFs in Arabidopsis and cotton (Bian et al., 2020;

Chen et al., 2017; Huang et al., 2016; Jacob et al., 2017;

Kolmos et al., 2014; Nakashima et al., 2014; Weltmeier

et al., 2009; Figure 3a). We further compared the gene from

the enriched GO/KEGG terms (N = 119) in this module, as well as

seven genes identified in previous GWAS, with lint yield for the

presence of TF motifs (Fang et al., 2017; Su et al., 2016; Sun

et al., 2021; Table S9). These four TFs, HSF7, HSF6, HSFA6B and

DREB2A (Figure 3a, upper panel), are predicted to bind to a

number of stress and heat response genes (Figure 3a, bottom

panel). Notably, only HSFA6B and DREB2A are predicted to bind

to the seven lint yield-associated genes in the module (Figure 3a,

boxed, Table S10). This suggests that the cotton DREB2A and

HSFA6B homologues are likely candidates for the observed

association between water stress and fibre yield.

Given their association with fibre yield and drought stress,

these two TFs likely regulate downstream stress-responsive

genes. To test this, we performed DNA affinity purification

sequencing (DAP-seq) using cotton DREB2A and HSFA6B and

examined the DNA-binding ability of the homoeologues from

both subgenomes (e.g. GhDREB2A-A and GhDREB2A-D). More

than 40 million (DREB2A) and 37 million (HSFA6B) single-end

reads (SE: 150 bp) per replicate enabled the identification of

more than 20 000 peaks with high reproducibility for each

sample after peak calling. For each TF, despite both being

expressed in an in vitro wheat germ system (Figure S5), only a

single homoeologue, namely GhHSFA6B-D, derived from the D

subgenome (Gohir.D08G072600), and GhDREB2A-A, derived

from the A subgenome (Gohir.A13G021700), could bind to

DNA above background. Using irreproducibility discovery rate as

a cutoff (IDR, P < 0.05), a total of 16 927 and 16 704 high

confidence peaks were identified between replicates of

GhDREB2A-A and GhHSFA6B-D (Figure 3b, Table S11). After

filtering for GhHSFA6B-D and GhDREB2A-A peaks in the 5 kb

upstream region of annotated coding genes (distal promoter), as

well as peaks within the 50 untranslated regions (UTRs) of

coding genes (proximal promoter), a total of 5229 and 3178

genes were identified as likely regulatory targets of GhDREB2A-

A and GhHSFA6B-D, respectively (Figure 3b, Tables S12 and

S13). Genomic sequences associated with these peaks were

further processed by motif analysis (MEME suite; Bailey

et al., 2015) to identify binding sites and test the levels of

conservation of consensus motifs. As expected, both target

sequences of the two TFs revealed high-level conservation

(E-value: 3.8e-855 across 3180 peaks and 5.9e-603 among 5218

peaks; Figure 3b), compared to core HSFA6B- and DREB2A-

binding elements (HSEs and DREs) from other species (Nishizawa

et al., 2006; Sakuma et al., 2006; Scharf et al., 2012). Interest-

ingly, although our AME TF approach only predicted a

GhHSFA6B-D-binding motif in the lint yield-associated gene

GhIPS1-A (myo-inositol-phosphate synthase protein), we

observed DAP-seq peaks for GhHSFA6B-D binding to both

GhIPS-A and GhABP-A (Figure S6). In addition, we observed

GhHSFA6B-D peaks in the promoter region of both GhDREB2A-

A and GhDREB2A-D homoeologues (Figure S6) but did not

observe reciprocal GhDREB2A-A peaks in the promoter of

GhHSFA6B-D, suggesting that GhHSFA6B-D may act as a

regulator of GhDREB2A-A. Together, these data suggest that

GhHSFA6B-D and GhDREB2A-A may regulate expression of

stress-responsive pathway genes under drought in cotton.

To determine if GhHSFA6B-D and GhDREB2A-A might have a

specific impact under stress on genes found within the lint yield

module, we profiled transcriptome changes between treatments.

A comparison of average log2FC (WL relative to WW) for in-

module targets of GhHSFA6B-D or GhDREB2A-A revealed a

significant up-regulation relative to a similar number of their out-

of-module targets (P < 0.001, Figure 3c, Table S14). The analysis

of GO enrichment (P < 0.01) for these downstream target genes

found that only the genes bound by GhHSFA6B-D in the module

were enriched for stress response terms (�log10(Q-value) > 8),

whereas both GhHSFA6B-D and GhDREB2A-A exhibited in-

module specificity to chaperone/protein folding-related genes

(Figure 3d). These data suggest that while both TFs display a high

degree of regulatory connections between fibre yield and stress

responses, GhHSFA6B-D may be a major regulator.

To better visualize the interactions between these two TFs and

other genes within the lint yield module, including each other, we

synthesized our data into a regulatory network using cytoscape

(Figure 4a). To simplify this network, 866 genes in this module

were reduced to a subset of 126 core genes by selecting genes

with enriched GO terms, KEGG pathways, annotated as TFs or lint

yield-associated genes, and those highly correlated with lint yield

(trait-correlated genes; Figure 4a, see key). Trait-correlated genes

are those with high module membership (MM), which is derived

from the correlation between gene expression and the eigenvalue

(first principal component) of the lint yield module, and gene

significance (GS), a term reflecting the correlation between gene

expression and lint yield (Figure 4b, orange circles). These target

genes are those whose expression change across the 21

accessions is most likely to explain variation in lint yield in this

panel. To further develop this network, we integrated the co-

expression information derived from WGCNA, TF-target binding

from our DAP-seq data and protein–protein interactions (PPIs)

from the STRING database ((Szklarczyk et al., 2017); Figure 4b).

This network illustrates the high degree of connectivity

between GhHSFA6B-D and the trait-correlated genes, both in

terms of expression and direct connection (Figure 4b). Of the 24

trait-correlated genes, GhHSFA6B-D is predicted to bind 16 target

genes based on DAP-seq analysis (Figure 4b and Table S10),

whereas GhDREB2A-A is predicted to only bind two genes based

on AME motif enrichment. As mentioned above, GhHSFA6B-D

binds to both GhDREB2A-A and GhDREB2A-D homoeologues

based on DAP-seq data. In addition, GhHSFA6B-D was found to

bind to its own distal promoter region, suggesting it may act in an

autoregulatory loop (Figure 4b and Table S10). Finally, despite

AME predicting interactions between GhHSFA6B-D,

GhDREB2A-A and the five lint yield-associated genes, only two

DAP-seq-derived peaks between GhHSFA6B-D and GhIPS1-A and

GhABP-D were observed. As the initial AME TF predictions were

made based on DAP-seq data from Arabidopsis (O’Malley

et al., 2016), it is not unexpected that TF binding preferences

will have shifted slightly for these TFs in cotton, highlighting the

importance of our TF binding validation.

DREB2A and HSFA6B affect the expression of both
homologous ABP loci

The inferred gene regulatory network, developed from multiple

lines of evidence, suggests a direct regulatory interaction among

HSFA6B, DREB2A and two of the five lint yield-associated genes,

GhABP and GhIPS. GhABP-A (Gohir.A12G006700) is an auxin-

binding protein involved in cell elongation and cell division that

was previously identified as a lint yield QTL (Zhu et al., 2020). TF-

binding motif predictions based on the Arabidopsis Cistrome

Database (O’Malley et al., 2016) identified DREB2A and HSFA6B
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Figure 3 Identifying HSFA6B and DREB2A targets with DAP-seq. (a) Identity of the six key hub TFs within the lint yield-associated module (Top). For each

TF, the �log10 (Adj-P value) level of motif enrichment among co-expressed genes within the module is shown, along with the reported stress response. For

the four abiotic stress-associated TFs, their AME predicted binding to the genes with enriched GO terms within the module, as well as five GWAS-identified

lint yield genes, is shown (bottom). As GhHSFA6B-D and GhDREB2A-A were both stress response regulators and predicted to bind to at least one of the five

lint yield-associated genes, they were chosen for DAP-seq library creation (red dashed box). (b) Illustration of annotating peaks derived from GhHSFA6B-D

and GhDREB2A-A DAP-seq data. The top panel highlights DAP-seq peaks within the 5-kb upstream regions (distal promoters) and 50UTR regions (proximal

promoters) of annotated genes. The bottom panel depicts the two consensus motifs identified from 3180 peaks (GhHSFA6B-D) and 5218 peaks

(GhDREB2A-A) that passed stringency filters. (c) Comparison of the log2 fold change of transcript abundance (WL relative to WW) for GhDREB2A-A and

GhHSFA6B-D DAP-seq targets between genes in the lint yield-associated module (192 GhHSFA6B-D targets and 76 GhDREB2A-A targets) and genes

selected from transcriptome-wide through random sampling (N values shown below). Pairwise significance was performed using a paired Student’s t-test.

(d) Comparison of enriched GO terms among genes bound by GhHSFA6B-D and/or GhDREB2A-A within the lint yield module and targets from a

transcriptome-wide group of expressed transcripts. The level of enrichment for each GO term is reflected by �log10 Q-value, with higher levels of

enrichment corresponding to larger values. The ‘star’ logo highlights the ‘stress response’-enriched GO term.
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motifs for both homeologous GhABP loci (GhABP-D and GhABP-

A; yellow boxes, Figures S7 and S8A). GhABP-A, but not GhABP-

D (Gohir.D12G006100; GhABP-D), was bound by both TFs based

on our DAP-seq data (GhHSFA6B-D peak centre: �561 bp TSS

and GhDREB2A-A peak centre: �1445 bp TSS, Figure S8A).

GhABP-D was also absent from the lint yield module, and a

comparison of expression versus lint yield across the 21 accessions

revealed that GhABP-D was expressed at lower levels than

GhABP-A (Figure S7). In addition, GhABP-A displayed a stronger

correlation with the lint yield across the accessions. Despite the

lower expression level of GhABP-D than GhABP-A, the abun-

dance of both transcripts was positively correlated with both TFs

(Figure S8C). A sequence comparison of the identified TF-binding

regions between GhABP-A and GhABP-D revealed only minor

changes near the GhDREB2A-A (two SNPs, Figure S8A, top) and

within the HSFA6B motifs (four SNPs, Figure S8A, bottom). No

changes were observed within the core dehydration-responsive

elements (DREs) or heat-shock elements (HSEs) that these two TFs

are known to bind to in other systems (Figure S8A, red boxes).

To determine if the observed SNPs are responsible for the

altered transcript abundance and DAP-seq peaks arising from

these two homologous loci, we performed an electrophoretic

mobility shift assay (EMSA, Table S15), using ~50 bp probes that

spanned the respective DRE and HSE motifs (Figure S8A, pink

bars). Both recombinant GhDREB2A-A and GhHSFA6B-D bound

to their respective labelled probes, causing a gel shift that was not

Figure 4 Integrated network display of a module of transcripts associated with lint yield. The module membership (MM) scores and gene significance (GS)

for genes within the lint yield module were plotted with the linear model fitted line (a). The dashed black lines indicate the two cut-offs used to identify

trait-related genes (orange dots, GS > 0.7, MM > 0.8). The integrated network derived from 133 of 866 selected genes within the lint yield-associated

module was presented by layering multiple levels of information (b): gene categories are shown in the bottom line, as corresponded to the colour of

highlighted dots in MM-GS plot, including genes associated with stress response (blue), TFs (red), heat response (light purple), spliceosome pathways, biotic

response pathways and five lint yield QTLs (green), whereas connection types are shown in the top right. The solid ‘grey’ lines connected the co-expressed

genes from transcriptional level, the dashed ‘red’ lines indicated protein–protein interactions derived from STRING database and the ‘blue’ dash-arrowed

lines highlighted targets bound by DREB2A and HSFA6B, as supported by DAP-seq data.
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evident in the probe alone or probe + empty vector controls

(Figure S8D,E). As expected, adding a large molar excess (2009)

unlabelled probe to the reaction was sufficient to compete for

protein binding. Interestingly, the probes corresponding to the

GhABP-D homeologue were also able to compete for binding

with GhDREB2A-A and GhHSFA6B-D (Figure S8D,E). These data

suggest that the SNPs observed between the GhABP-A and

GhABP-D distal promoter regions are insufficient to explain the

specificity observed between these paralogues.

HSFA6B affects lint yield by modulating the expression
of an inositol phosphate synthase (IPS)

The IPS gene, also known as MIPS in Arabidopsis, encodes for the

myo-inositol-phosphate synthase protein (INO-1), which catalyses

the rate-limiting step in the synthesis of myo-inositol-6-phosphate,

a key source of phosphate in seed endosperm (Mitsuhashi

et al., 2008). In addition, myo-inositol is a precursor of the

osmoprotectants galactinol and raffinose and thus is critical in a

number of abiotic and biotic stress responses (Vinson et al., 2020).

In contrast to ABP, there are four IPS genes in upland cotton

(Gohir.D03G043600 – GhIPS1-D, Gohir.A02G132300 – GhIPS1-

A, Gohir.D11G224000 – GhIPS2-D and Gohir.A11G199700 –
GhIPS2-A, Figure S9), two of which (GhIPS1-D and GhIPS1-A)

show a positive correlation between RNA abundance and lint yield

across our panel (Figure 5b). These two homeologous IPS genes

fall in syntenic regions of the ‘D’ and ‘A’ subgenomes and are

phylogenetically distinct fromGhIPS2-A andGhIPS2-D (Figure 6a).

Despite a reported expression bias towards D subgenome

homoeologues (Chen et al., 2020), only GhIPS1-A was predicted

to contain a GhHSFA6B-D binding site based on DAP-seq data

and the Arabidopsis Cistrome Database (Figure 5a, purple and

yellow boxes, respectively). A pairwise comparison of the distal

promoter regions of GhIPS1-A and GhIPS1-D revealed substantial

polymorphisms between the two regions that appear to have

disrupted the core HSE in this region in GhIPS1-D, as well as

between GhIPS1-D and GhIPS2-A/D (Figure 5a, bottom; Figur-

e S9A). An examination of IPS1 distal promoter elements in G.

hirsutum, G. barbadensis, G. raimondii (a D subgenome

representative) and G. arboreum (old world cotton and an A

subgenome representative) revealed conservation of the HSE

within GhIPS1-A in G. hirsutum, G. barbadensis and G. arboreum,

but not in IPS1-D loci for any of these species (Figure 6a). In

agreement with the DAP-seq data, we observe a strong positive

correlation between GhHSFA6B-D and GhIPS1-A transcript

abundance, but not between GhHSFA6B-D and any of the other

GhIPS loci (Figure 5c; Figure S8). Interestingly, an HSE and

AtHSFA6B DAP-seq peak were observed upstream of the

Arabidopsis IPS1 and IPS2 paralogues in Arabidopsis cistrome

data (AT4G39800 and At2G22240, respectively; Figure 6a),

suggesting this regulatory mechanism may be conserved between

these two species.

An examination of polymorphisms within our RNA-seq data

relative to the TM-1 reference genome uncovered a lint yield-

associated SNP directly adjacent to the predicted GhHSFA6B-A-

binding motif (Figure 5a). While this nucleotide is a cytosine (C) at

this position in the reference genome and G. barbadensis and G.

arboreum, we observed two genotypes in our panel, either with a

cytosine (C, n = 8) or a thymine (T, n = 9; Figure 5d). Interest-

ingly, the ‘C’ genotypes, which were either the U.S. or ‘mixed’

accessions, showed increased lint yield under water-limited

conditions relative to the ‘T’ genotypes (Figure 5d), suggesting

this region might impact GhHSFA6B-D binding. To define the

GhHSFA6B-D binding site more carefully in the GhIPS1-A

promoter region, we designed a labelled probe centred on the

core HSE (Figure 5a, pink box). A gel shift was observed when

this probe was combined with in vitro-expressed GhHSFA6B-D

protein (Figure 5e). As expected, this signal was abolished when a

large excess of unlabelled probes was added. The addition of an

unlabelled competitor, corresponding to the homologous

GhIPS1-A promoter region with a disrupted HSE (Oligo 2,

Figure 5e) was unable to abolish binding, even when adding a

large molar excess (4009 and 6009; Figure 5e). As the labelled

probe contained the reference nucleotide (C) at the site of the

observed lint yield-associated SNP, we next tested if altering this

nucleotide, but leaving the rest of the HSE intact, had an impact

on HSFA6B binding. Oligos with this site altered to an A, T or G

nucleotide (SNP probes 1–3) could compete for GhHSFA6B-D

binding when added in excess (2009; Figure 5e).

While the SNP oligos were competing with the reference oligo

when added in excess due to its location outside of the HSE, it is

not clear if the site of the SNP impacts GhHSFA6B-D binding. To

precisely address this question, we performed a competition

experiment using lower concentrations of two non-native SNP

probes, SNP-A and SNP-G (SNP probes 1 and 3), that are not

present in the genomes of our panel or a much larger sequenced

panel comprised of 1024 accessions (Yuan et al., 2021;

Table S16). Surprisingly, equimolar amounts of either

non-native competitor SNP oligos were capable of competing

with the reference probe to a higher degree than the unlabelled

reference oligo (Figures 5b and 6c; Figure S10). These data

suggest that this site, which contains the only observed SNP

within the DAP-seq peak region of GhIPS1-A in our panel, has a

strong influence on GhHSFA6B protein binding, GhIPS1-A

expression and lint yield. Given the differentially accumulated

frequency of SNPs at this site in extant accessions (wild,

cultivated, improved and mutant) (Figure 6b), this site has likely

been under different levels of selection in wild and cultivated

accessions due to its connection to improved yield.

Conclusions

Understanding the regulatory crosstalk between agronomic traits

of interest (e.g. yield) and heat and drought stress responses is

critical for developing drought-tolerant cultivars with minimal

impacts on yield (Alizadeh et al., 2020). Characterizing

genotype-specific molecular responses under water-limiting

conditions is challenging due to the genetic complexity underly-

ing quantitative physiological traits (Tardieu et al., 2011; Welcker

et al., 2011). In most crop species, this genetic complexity is

influenced at the pre- and post-transcriptional level by cis-

regulatory control, gene structural variation and post-translational

modifications (Joshi et al., 2016; Tardieu et al., 2017). In cotton,

this complexity is further compounded by a recent (~1.0–1.6 Ma)

allopolyploidy and strong human selection within the last

8000 years (Chen et al., 2020). Despite the strong selection

existing in current elite G. hirsutum cultivars relative to other

domesticated crops (Chen et al., 2020; Ma et al., 2018; Su

et al., 2016), variation in gene expression was identified across

the panel for a cohort of transcripts that could be associated with

improved yield under water-limiting conditions.

Despite the developmental stage at which we sampled for

transcriptomics (primarily the cell elongation stage within the

developing bolls; Ma et al., 2018), there was already a strong

transcriptomic signal in our data connecting abiotic stress factors
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and lint yield. This group of lint yield and abiotic stress-associated

genes were largely regulated by the well-known transcription

factors GhDREB2A-A and GhHSFA6B-D. Importantly, based on

DAP-seq, motif enrichment and co-expression, HSFA6B not only

regulates GhDREB2A-A in this module but also regulates itself

and two lint yield-associated genes, GhABP and GhIPS1-A. While

GhDREB2A-A was previously shown to be regulated by

GhHSFA6B-D in Arabidopsis, this regulation was dependent on

ABA in general, and specifically the ABA response element TF

AREB1 (Huang et al., 2016; Sakuma et al., 2006). In contrast, in

cotton, this regulation does not appear to be ABA dependent, as

none of the typical ABA-responsive elements, or ABA biosynthesis

genes, were associated with this module, nor does HSFA6B

contain a canonical AREB binding domain (ABRE) or share an

expression profile with GhAREB1. However, this hypothesis

requires further examination. This specialized regulatory mecha-

nism appears to have emerged in cotton well before domestica-

tion. Indeed, the old world variant of IPS1 arising from the A

subgenome (GhIPS1-A) is the only IPS to be targeted by

GhHSFA6B-D. In fact, this HSFA6B – IPS1 regulatory connection

may reflect an evolutionarily conserved stress response mecha-

nism, as it is also observed in Arabidopsis. Of importance to

breeders, this regulatory mechanism appears to have undergone

additional selection since speciation to maintain yield under

water-limited conditions.

Methods and materials

Plant materials and experimental design

Plant growth conditions have been described in Melandri

et al. (2021), where these same cotton accessions were examined

for their metabolite profiles in response to drought stress over a 2-

year field experiment. In brief, a panel of 22 upland cotton

(Gossypium hirsutum L.) accessions (Table S1) were grown at the

University of Arizona Maricopa Agricultural Center (MAC) in

Maricopa, AZ, U.S., during the summer of 2019. The accessions

were arranged in a randomized incomplete block design with half

of the plots experiencing normal irrigation (well-watered, WW)

and the other half treated with water-limited (WL) condition,

starting when 50% of the plots were at first flower and consisting

of approximately half of the WW irrigation amount. Leaf tissue

was harvested ~50 days later at the boll development stage and

used for metabolomics (details in Melandri et al. (2021)) and

transcriptomics analyses. For RNA extraction, two biological

replicates, comprised of 10 leaf discs (0.64 cm in diameter) of

the upper-most expanded leaf derived from 5 randomly selected

plants (2 leaf discs from each plant), in each plot were collected

within a single day during a time window of 3 h (11:00–14:00).
Leaf discs were stored in a 2 mL Eppendorf tube containing

1.5 mL of RNAlater (Fisher #AM7021, Waltham, MA) and stored

on ice before being transferred from field to lab where they were

then stored in a –80 °C freezer before further processing steps.

Metabolite and phenotypic data measurement

All details on the procedures used to collect/determine the

phenotypic trait data and metabolite data used in this study can

be found in Melandri et al. (2021). In brief, cotton fibre quantity

and quality traits included lint yield (grams/plot), micronaire (Mic,

units of air permeability), upper half mean length (UHM, inches),

length uniformity (UI, per cent), strength (Str, grammes per tex)

and elongation (Elo, per cent). Reflectance-based vegetation

indices (VIs) included normalized difference vegetation index

(NDVI), carotenoid reflectance index (CRI), scaled photochemical

reflectance index (sPRI) and the ratio between the water index

(WI) and NDVI (WI/NDVI). The levels of 451 metabolites were

determined by untargeted gas chromatography–mass spectrom-

etry (GC–MS, 27 metabolites) and liquid chromatography–mass

spectrometry (LC–MS, 424 metabolites). Best linear unbiased

estimators (BLUEs) of each phenotypic trait and metabolite value

were generated for each cotton accession before being used for

downstream statistical analyses.

RNA-seq library construction

Extraction of RNA from leaf disks was performed using methods

from previous studies (Pang et al., 2011; Wu et al., 2002). Hot

borate buffer was prepared containing 0.2 M sodium borate pH

9.0, 30 mM EGTA, 1% SDS and 1% sodium deoxycholate. Just

before use, PVP-40, NP-40 and DTT were added to the hot borate

buffer to a final concentration of 2%, 1% and 10 mM

respectively. To extract RNA, a total of approximately 0.75 mL

hot borate buffer per 50 mg tissue (~5 cotton leaf disks) was

used. Buffer was heated to 80 °C, and 250 lL hot buffer was

added to 5 leaf disks. Tissue was ground in the hot buffer in a

mortar and pestle, then 15 lL of 20 mg/mL proteinase K (Roche

#46950800: Indianapolis, IN/Sigma #3115887001: Burlington,

MA) per sample was added and the tissue was ground again. A

final 500 lL hot buffer was added before grinding a final time.

Lysate was added to a Qiashredder column (Qiagen #79656:

Germantown, MD) and centrifuged at 13 000 g for 1 min. Flow

through was added to 0.5 volumes of 100% ethanol. The mixture

was used as input for RNA cleanup using the RNeasy kit (Qiagen

#74104) according to the manufacturer’s instructions. Samples

Figure 5 EMSA validation of interaction between GhIPS1-A and GhHSFA6B-D. (a) Top: Schematic representation of GhIPS1-A and its homologue, GhIPS1-

D depicting the gene structure as well as the distal promoter region where the HSFA6B binding site was identified. Filled boxes represent annotated exons.

Grey shading connecting the two genes represents sequence similarity, with the distal promoter region showing high structural and sequence variation.

Bottom: An alignment for the DAP-seq peak for HSFA6B in the promoter region of GhIPS1-A and its corresponding region from GhIPS1-D. Also shown are

the DAP-seq- and Cistrome-identified GhHSFA6B-D binding site (HSE, purple and yellow boxes, respectively), as well as the labelled probe and competitor

oligos used for EMSA. A green asterisk denotes the site of the C:T SNP observed within our panel. (b) Pearson correlation among GhIPS1-A (red), GhIPS1-D

(blue) expression (TPM) and lint yield. (c) Pearson correlation between TPM values of GhIPS1-A and GhHSFA6B-D. (d) Variation in lint yield between

accessions associated with ‘C/C’ (blue) and ‘T/T’ (brown) genotypes of a SNP adjacent to the HSE element in the distal promoter of GhIPS1-A (~3.1 kb

upstream of GhIPS1-A start). Accessions lacking sufficient coverage at this site are shown in grey. Accessions bearing the C/C or T/T genotypes were also

divided based on their phylogenetic groupings (i.e. ‘U.S.’, ‘Foreign’ and ‘Mixed’) from Figure 1a. (e) Interaction between the GhHSFA6B-A protein and

GhIPS1-A probe was examined by EMSA. The reaction components for each lane are listed below the gel image, including the IRD700-labelled probe,

unlabelled probe (2009, same sequence as the labelled probe), competitor sequence (2009, 4009 and 6009, containing the GhIPS1-D disrupted HSE),

empty vector and the other competitor sequence (2009, containing one of the three SNP probes, A, T or G).
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Figure 6 Identification of an HSE-adjacent SNP that impacts GhHSFA6B-D binding to GhIPS1-A. (a) A phylogenetic tree containing GhIPS1 and GhIPS2

homeologous genes from G. hirsutum (AADD), G. barbadense (AADD), G. arboreum (AA) and G. raimondii (DD) was constructed using Arabidopsis

thaliana IPS homologues as an outgroup. The ‘orange’ and ‘light blue’ labels denote the presence of the HSE upstream of GhIPS1-A genes in all AA

genome-containing species, but not in the distal promoters of GhIPS1-D genes found in DD genome species, nor in any of the GhIPS2 paralogues in either

AA or DD genomes. (b) Distribution of genotypes of the GhIPS1-A DAP-seq peak-associated SNP (C:T) in a published whole-genome sequencing-based

panel (1024 accessions; Yuan et al., 2021). The distribution is summarized in pie charts reflecting the accession frequencies of the wild, cultivated and

mutants and improved G. hirsutum accessions across the ‘C/C’ genotype (reference genome genotype), ‘T/T’ genotype and ‘T/C’ genotype. (c) The level of

the GhHSFA6B-D to GhIPS1-A binding efficiency of different IPS-associated SNP variants was examined by competitions between the IDR700 dye-labelled

reference oligos and non-labelled oligos with the reference nucleotide ‘C’, or the non-native SNP oligos ‘G’ and ‘A’ respectively. Left panel: Binding

efficiency of the reference ‘C’ containing probe was tested by titrating in increasing amounts of the competitor probe (unlabelled reference ‘C’). Right

panel: The impact of this nucleotide position on GhHSFA6B-D binding was tested by competing the labelled reference probe with increasing amounts of

two non-native probes (‘G’ or ‘A’). Components in each reaction are shown below.
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were eluted with RNase-free water. RNA-seq libraries were then

generated from mRNA-enriched samples using the Amaryllis

Nucleics Full Transcript Library Prep kit (YourSeq Duet,

https://amaryllisnucleics.com/kits/duet-rnaseq-library-kit).

Transcriptome sequencing and data processing

Each of the 22 G. hirsutum accessions treated under both the

WW or WL conditions was sequenced using Illumina HiSeqTM

2500 (San Diego, CA) paired-end libraries. Trimmomatic was used

to trim adapters and low-quality reads (Bolger et al., 2014).

Furthermore, reads were aligned to the G. hirsutum reference

genome (Ghirsutum_527_v2.0, accession ID: VKGJ01000000),

acquired from Phytozome (Chen et al., 2020), using RMTA

v2.6.3 pipeline (Peri et al., 2020) with default parameters and

further quantified reads mapped back to each locus using

FeatureCounts (parameter: multimapping; reads: counted; and

multi-overlapping reads: counted) and then transformed into

length normalized transcripts per kilobase million (TPM) by

custom R scripts (Liao et al., 2014) The raw feature counts for

each transcript across 88 samples were normalized by DESeq2

(Love et al., 2014). To test the reproducibility of replicates, we

used the Pearson correlation of normalized counts between each

set of replicates. Replicates with R2 < 0.8 and P > 0.05 between

samples were removed, leading to only 21 accessions being

further examined. Furthermore, pairwise comparison of TPM

values under WL and WW conditions for each accession was

performed to identify respective accession-specific DEGs (model:

~entry + treatment + entry: treatment). For each accession,

significant DEGs under WL condition were classified using

thresholds adjusted P-value < 0.01, Log2FC > 1 (upregulated)

or <1 (downregulated). We examined the average expression of

all genes from A and D subgenomes with expression >1 TPM to

determine whether there is a shift in global subgenome gene

expression between WW and WL conditions. This analysis tests

the hypothesis (Alger and Edger, 2020) that subgenomes may be

adapted to different environments such that their expression

dominance may be affected by spatiotemporal contexts.

Variants calling and phylogenetic analysis

Variant calling was conducted with the GATK4 pipeline using the

haplotypecaller function (Brouard et al., 2019). The average

mapping depth (DP) was calculated across 84 samples as

screening cutoff which is equal to 4.12. Then, we filtered out

variants with sites with DP < 3, depth by quality (DQ) < 2,

genotype quality (GQ) < 20 and minor allele frequency < 0.025

by vcftools (Danecek et al., 2011). Phylogenetic relationships

were inferred using the IQ-TREE pipeline with filtered SNPs

(Nguyen et al., 2015). Briefly, variants calling files (VCFs) of all

samples were transformed into phylip format by vcf2phylip tools,

and a maximum-likelihood tree was constructed (parameter: -nt

AUTO -m MFP, Ortiz, 2019) and plotted by Figtree (http://tree.

bio.ed.ac.uk/software/figtree/). The 21 accessions were subdi-

vided into different groups based on phylogenetic, geographic

and historical breeding information obtained from USDA-GRIN

(https://www.ars-grin.gov). A publicly available deep-sequenced

(~209) WGS dataset containing 17 of 21 accessions used for field

experiments was obtained from the NCBI SRA (Table S1) to

identify genome-wide variants. The reads were trimmed by

trimmomatic (default settings, (Bolger et al., 2014)) and mapped

to the reference genome using bwa-mem along with retention of

unique mapped reads by picard (MarkDuplicates – remove =
TRUE) for variants calling. The haplotypecaller calling was

performed by GATK4 and filtered by VCFtools (--max-missing

0.9, --maf 0.05, minGQ 20, minQ 200 and minDP 5 (Danecek

et al., 2011)). The filtered variants were annotated using VEP

(default settings; McLaren et al., 2016) to classify variations to

coding regions, promoter and inter-genic regions.

Principal component analysis (PCA)

To estimate the strength of treatment effects and the impact of

phylogenetic relatedness on transcriptomic and metabolomic

profiles, a principal component analysis (PCA) was performed

using normalized read counts of 3,768 genes associated with the

top 10% of transcriptomic variance or using plotPCA function of

DESeq2 (Love et al., 2014), and normalized Z-score of 451

metabolites using ‘factoextra’ R package (https://cran.r-project.

org/web/packages/factoextra). Contribution rates for each com-

ponent were calculated using plotPCA. The first three compo-

nents from transcriptome and metabolites were visualized in a

three-dimensional PCA using Cubemaker (https://tools.

altiusinstitute.org/cubemaker/).

Weighted gene co-expression network analysis

Gene co-expression network was constructed using theWGCNA R

package to classify gene expression modules and explore module–
trait relationships (Langfelder and Horvath, 2008). Genes with

both a high median absolute deviation (MAD) score (top 10%) and

genes with high expression (average TPM across all samples > 1)

were retained for expression module classification. The pickSoft-

Threshold function was used to identify the optimal soft power

threshold (=7) at which R2 surpassed 0.85 and no further

improvements in mean connectivity (module size) were observed,

as performed previously (Zhu et al., 2018). Block-wise modules

were constructed using the following parameters (power = 7,

maxBlockSize = 5000, TOMType = ‘unsigned’, minModule-

Size = 30, reassignThreshold = 0 and mergeCutHeight = 0.2).

Trait–module relationships were derived using the ‘modTraitCor’

function in WGCNA. Modules that displayed a high trait

correlation (R2 > 0.6, P < 0.05) were selected for further analysis.

To investigate modules with high module–trait membership, only

co-expressed genes with strong connectivity (weight score > 0.1)

were retained for downstream analysis.

Functional characterization of trait-correlated module

Gene functional annotations of filtered genes (weight

score > 0.1) in lint yield-correlated module were obtained from

the cotton functional genome database (CottonFGD) to perform

enrichment of gene ontology (GO) and KEGG pathways

(https://cottonfgd.org/; Zhu et al., 2017) using Fisher exact test

(P < 0.01). Transcription factors (TFs), transcription regulators

(TRs) and protein kinases within this module were classified using

iTAK (Zheng et al., 2016). Reported protein–protein interactions

(PPIs) among genes within the same module were screened using

the STRING database (Szklarczyk et al., 2017; confidence

level = 0.6, interaction source: database and experiments). To

identify the upstream master TF(s) that may bind to genes within

the lint yield module, the enrichment of consensus TF motifs was

tested using the 2-kbp upstream region of the 866 co-expressed

genes within the module. The enrichment test was performed by

the analysis of motif enrichment (AME) pipeline (McLeay and

Bailey, 2010) with the Arabidopsis DAP-seq profiles of O’Malley

et al. (2016) as the consensus motif database (parameters: --

scoring avg --method fisher --hit-lo-fraction 0.25 --e-value --kmer

report-threshold 10.0, cutoff: TP values > 3, P-value < 0.001).
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DNA affinity purification sequencing (DAP-seq) library
construction

The four TFs were selected as hub genes to construct DAP-seq

libraries, including two GhDREB2A (Gohir.A13G021700 and

Gohir.D13G022300) and two GhHSFA6B (Gohir.D08G072600

and Gohir.A08G064100). DAP-seq assay was carried out as

described by published protocol (Bartlett et al., 2017). The NEB

next� DNA library prep master mix set for Illumina kit (NEB

#E6040S) was implemented to prepare the DAP-seq gDNA

library. The pIX-HALO vector (cat#G184A, Promega) was used

to fuse the GhDREB2A and GhHSFA6B into the HaloTag. We

further used the TNT SP6 high-yield wheat germ protein

expression system (L3260, Promega) to express the four TFs-

HaloTag fusion protein. Magens HaloTag beads (G7281, Pro-

mega) were used to purify the fusion protein. The fusion protein

and 500 ng of library DNA were co-incubated in 40 lL PBS buffer
for 1.5 h shaking in a cold room. The beads were washed with

200 lL PBS + NP40 (0.005%) for five times. The supernatant was

discarded and an aliquot of 25 lL of elution buffer was added.

Finally, beads were incubated at 98 °C for 10 min to elute DNA

fragments. According to the fragment size of the library, the

DAP-seq library concentration for a given read count was

measured.

DAP-seq sequencing and peak analysis

DAP-seq libraries were sequenced by Illumina short reads

platform (single end: 150 bp) with a total of expected 40 million

reads for each protein to be sequenced. These reads were

trimmed by TrimGalore (Krueger, 2015) and then mapped to the

reference genome (TM-1: Ghirsutum_527_v2.0, Phytozome

accession ID: VKGJ01000000) (Chen et al., 2020) using bowtie2

and sorted by sambamba. Before peak calling, only the unique

mapped reads were retained by sambamba (parameter: -F ‘[XS]

== null and not unmapped and not duplicate’) to prevent false

positives due to multiple mapped hits (Tarasov et al., 2015).

Furthermore, the MAC2s tool was applied to call peaks

(parameter: --keep-dupall -g 2.3-e9) and high-confidence peaks

were captured using IDR (Padj < 0.05; Zhang et al., 2008). These

high-quality peaks were annotated based on reference gene

annotation using the ChIPseeker R package (Yu et al., 2015).

Regulatory regions of a target gene were defined as the 5 kb

upstream sequences before the transcription start sites (TSSs) and

the downstream sequences bearing the longest 50UTRs among

respective isoforms. In particular, only DAP-seq peaks which fell

into the regulatory regions were kept as TF-targeted genes. The

sequences associated with DAP-seq peaks of TFs were harvested

as query sequences to perform motif discovery by MEME suite

(Bartlett et al., 2017) to identify conserved consensus motif

sequences among peak sequences (parameter: -mod zoops -

nmotifs 3 -minw 6 -maxw 50 -objfun classic -revcomp -

markov_order 0).

Genomic analysis of TF binding regions

Paralogous genes of the selected lint module genes (GhABP and

GhIPS ) were identified using Blastn (Ye et al., 2006), which aligns

the CDS sequences against the reference gene annotation (cut-

off: E-value < 10–3 and identities > 90%). Those hits identified

were further checked by functional annotation. Furthermore, the

promoter and coding regions of these paralogous gene pairs

were extracted and then aligned using multiple sequences

alignment by Geneious (tool: MUSCLE, iteration: 500) to identify

variants (SNPs and INDELs) between paralogous gene pairs,

specifically the regions bearing the DAP-seq peak (Kearse

et al., 2012). The potential binding sites of two TFs over the

peak regions were defined by motif scan (FIMO) using

Arabidopsis DAP-seq-derived consensus motif sequences (Motif

ID: ERF48_col_a, HSFA6B_cal_a, HSFA6B_colamp_a) (Bailey

et al., 2015).

In vitro protein expression and electrophoretic mobility
shift assay (EMSA)

Protein expression was carried out using the in vitro transcription

and translation system (TnTTM T7 Quick for PCR DNA, Promega:

Madison, WI) and the EMSA reaction was carried out following

manufacturer’s instructions (odyssey). The vector containing the

gene of interest (with flag tag) was PCR amplified to obtain the

DNA template. The reaction mixture contained the DNA

template, reaction buffer, amino acid mix and T7 RNA

polymerase, following the manufacturer’s instructions. The

reaction was incubated at the recommended temperature for a

specified duration, and the resulting protein product was

subsequently analysed by SDS-PAGE to confirm expression.

Immunoblot analysis was performed by using standard wet

transfer method. The proteins were blotted using nitrocellulose

membrane (Sigma Aldrich: Burlington, MA). Rabbit monoclonal

halo tag antibody was used in the (1:5000) dilution (v/v). Horse-

radish peroxidase-conjugated goat anti-rabbit antibodies were

used as secondary antibodies. Blots were developed using super-

signal chemiluminescent substrate following the manufacturer’s

instruction. The blots were imaged using the BioRAD gel imager

following the linear curve of detection in the signal.

The interaction between the expressed protein and its putative

DNA-binding partner was analysed using EMSA. A double-

stranded DNA probe containing the target binding site was

prepared by annealing complementary oligonucleotides labelled

with a fluorophore. The binding reaction mixture consisted of the

expressed protein, labelled DNA probe, binding buffer and

appropriate cofactors. The reaction mixture was incubated at

room temperature for 30 min to allow for protein–DNA complex

formation. Subsequently, the samples were resolved on a non-

denaturing polyacrylamide gel electrophoresis (PAGE) with a 6%

acrylamide concentration. The gel was run at 120 volts for 3 h in

19 TBE. Following electrophoresis, the gel was visualized using

LiCor Odyssey Gel Scanner to capture the mobility shifts

indicating protein–DNA complex formation. For competition

assays, unlabelled competitor DNA or unlabelled mutated

competitor DNA was added to the binding reaction at increasing

molar excesses.
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